There may be even greater energy-saving benefits to thermal energy storage than previously thought — learn more in this Ingersoll Rand / UC Davis study

by Brianna Crandall — April 23, 2018 — Global technology provider Ingersoll Rand, creator of comfortable, sustainable and efficient environments, engaged with the Western Cooling Efficiency Center at University of California, Davis, on research that shows thermal energy storage can provide significantly greater benefits to utilities and electricity grid operators than previously thought.

Scott Tew, from Ingersoll Rand’s Center for Energy Efficiency and Sustainability, which co-sponsored the study, stated:

This study will help utility companies and building operators optimize resource planning and energy use by capturing the full value of thermal energy storage, which uses an energy storage tank and ice to shift cooling needs to off-peak, night time hours.

The research project: Valuation of Thermal Energy Storage for Utility Grid Operators, demonstrated that the current method for estimating the electrical grid impact of thermal energy storage systems does not fully consider the impact of energy savings that occurs during the hottest days of the year, which means that estimates are far lower than previously thought. By basing estimates on a “10-day average baseline,” the data drastically under-estimates the impact of disconnecting the cooling system from the electric grid when temperatures outside are very hot and the grid reaches its peak load conditions.

According to the research, the current method under-predicts its impact on the electric grid by as much as 77%, between 38% and 57% on average, and by a minimum of 3%. The current method does not adequately account for shifts in building loads due to holidays, weekends or extreme events, when thermal energy storage can save the most energy by disconnecting cooling from the grid.

Mark Modera, director of the Western Cooling Efficiency Center at University of California, Davis, stated:

Power consumption is forecasted to grow, yet more than 72 gigawatts of electrical generating capacity has either already retired or is set to retire. These factors have created an increasing urgency for power providers to find solutions that will allow them to accommodate the growing consumption needs and peak demand requirements in the US.

These findings reinforce the sustainable, financial and connected benefits of thermal energy storage and provide a new approach for utility companies to consider to better estimate the electric grid impact of Thermal Energy Storage as they plan resources and service costs, says the company.

Whole-building simulations were used to model the electric grid impact of thermal energy storage systems. The simulations were performed on three building types using five types of cooling systems in three California climate zones. Trane TRACE 700 Load Design software simulated each building model and produced hourly cooling loads for each of the buildings. The cooling loads and ambient weather conditions were used to calculate the electric-grid impacts incurred from meeting the loads using each type of cooling system, as compared to using a thermal energy storage system.

These results were showcased by Trane experts at the Energy Storage Association’s (ESA) 28th Annual Conference and Expo in Boston last week, April 18-20, to discuss the next evolution of energy storage solutions.

The full report and research findings are available for download on the Trane Energy Storage System page and on the Western Cooling Efficiency Center website.